Advanced Topics on Privacy Enhancing
Technologies

CS-523

Anonymous Communication Exercises

1 Cryptographers’ Dinner

Consider a DC-networks scenario with a total of n cryptographers. Out of these,
k cryptographers dislike each other and thus are guaranteed not to collude. The
cryptographers decide to have a shared key setup and arrange themselves as a
graph (a cryptographer is a node in the graph, edges between nodes indicate a
shared key). Since a complete graph is expensive due to the large number of
keys, the cryptographers form a trusted root clique structure. The structure
is as follows: the k cryptographers form a root clique and share keys among
themselves. All the other cryptographers create shared keys with each of the
root clique members.

1. If all the members outside the root clique decide to collude, how does that
affect the anonymity of the root clique?

Solution:

For a node not to be completely compromised, it should have at least
one edge with another non-colluding node. In this scenario, members of
the root clique still have edges to each other that are not compromised.
The anonymity set size is k, which is the maximum possible case in this
scenario.

2. If kK — 1 cryptographers finally resolve their differences and decide to col-
lude, how does that affect the anonymity of the other nodes (assuming
the other nodes do not collude with the k& — 1 nodes)?

Solution:

Even if £ — 1 nodes collude, there are edges between the remaining node
in the root clique and every other node. The anonymity set size would be
n — (k — 1), which is the maximum possible size in this scenario.

3. What is the total number of shared keys required in the original setup?



Solution:

The root clique members need (g) = k(k — 1)/2 keys among themselves.
Each of the other members has shared keys with each root clique member,
leading to k(n — k) keys. Hence, the total is k(k — 1)/2 + k(n — k) keys.

The cryptographers decide to redesign their network. They form a structure
as follows: they arrange themselves in cliques of kK members. Within each clique,
members create shared keys with every other member. There are [ cliques in
total. All the cliques are then arranged in a ring structure. Every clique selects
a node as a leader, and leaders of each clique share keys with their immediate
neighbors in the ring.
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Figure 1: Topology for the second part of Question 2.

4. Within a clique, if m members decide to collude, how does that affect the
anonymity of the clique?

Solution:

Since the clique is a complete graph, non-colluding members will have
edges to other non-colluding members within the clique. The size of the
anonymity set for the non-colluding members would be & — m, which is
the maximum possible size in this scenario.

5. If two cliques decide to collude, how does that affect the anonymity of the
entire setup?

Solution:

If two cliques collude, they can partition the ring. If the size of one
partition is j cliques, the anonymity set sizes of the non-colluding members
in each partition is j x k and (I — j — 2) * k. This would be lower than
the maximum possible anonymity set in this scenario (maximum possible
anonymity is (I — 2) * k).

6. What is the total number of shared keys required in this setup?

Solution:

The clique members need (g) = k(k —1)/2 keys among themselves. Lead-
ers share keys with their neighbors in the ring structure, leading to [ keys.
Hence, the total is (k(k —1)/2 4 1) * [ keys.



2 Statistical Disclosure Attack

Alice uses a mix with a total of N participants. The mix works in rounds: in
each round, the mix waits for K < N users to send their messages. A message
can be sent to any participant in the network.

Alice uses the mix multiple times. She is wondering how likely an adversary
is to figure out that she is talking to Bob, one of the people she communicates
with using the mix. The adversary that Alice is concerned about can observe
network traffic: He knows who participates in each round, who sends messages,
and who receives the messages.

Consider the following probabilistic model of each round in which Alice par-
ticipates:

e The probability that the receiver i gets a message from Alice:

Pli « Alice] = a;

e The probability that the receiver i gets a message from a sender j # Alice:

Over T rounds in which Alice participates, the adversary keeps track of
all receivers’ statistics O; = % Zthl ogt), where ogt) > 0 indicates the number
of messages that i received in round ¢. Because all rounds are independent,

these observations can be thought as i.i.d samples from a random variable O; =
1i<*Al’iC€ + Zj;éAlice 1“‘3

1. In terms of the probabilistic model given above, what is the expected num-
ber of messages that the receiver i gets in one round, E[O;]? In T rounds?
Solution:

E[O;] = E[Lic atice] + »_, E[Lic ]

j#Alice
= P(i + Alice) + Y P(i < j)
Jj#Alice

Jj#Alice
Because rounds are independent, the expected number of messages in T'
rounds is T - E[O;].

2. Assume that Alice participated in enough rounds so that the Law of Large

Numbers (LLN) applies to the average statistics: O; ~ E[O;]. How can
the adversary estimate a; from a given model of u;;? Solution:

a; =~ 0; — E Uij

j#Alice



3. Suppose that Alice communicates only with Bob. The threshold of the
mix is K = 30, and the total number of participants is N = 290. The
adversary assumes that all users other than Alice send messages uniformly
to any other user: u;; = % What is the expected number of messages
that Bob and any other recipient receives in one round?

Over T' = 1000 rounds, the adversary observes that Opy, = 0.9. Adversary
also suspects that Alice might be talking to Carol. Carol’s statistic is
Ocaror = 0.1. What are the adversary’s estimates for Alice’s probability
to send messages to Bob and to Carol?

Solution:

K—-1
IIE[OBob] = aBob t+ T

K-1

E[O rol] = ar 7
[Ocarot] = acarol + N

Because Alice only talks to Bob on this mix, ag.s = 1, E[Opes] = 1+ % =
1.1, and E[Ocarol] = 255 = 0.1.

The estimated probabilities of Alice sending messages are:

. K-1 ) K—1
AQBob — 0.9 — T = 087 ACarol = 0.1 - T =0
Hence, under this model of communication, the adversary can be quite

sure that Alice is communicating with Bob, not Carol.

3 Getting Through a Crowd

The Crowds system may have a high latency depending on its parameters, and
some extensions like “always down or up” (ADU) aim to improve this latency.
In this exercise, we study the latency and privacy of these extensions.

1. A good measure for the latency of messages in crowds is the number of IP
hops I. Compute the expected value and variance of the number of hops
in crowds.

Solution:
After the first hop which does not allow direct sending, a crowds system
with the send probability ps sends the message following a geometric dis-

tribution which leads to the expected value E(I) = 1 + — and variance

]-_ps

var(l) = —;
Ps

In an ADU with parameters (e, [, h,m), the sender chooses a random number

ud [1, m] before sending the message. If i € [1, e]U[m—e, m] the sender directly
sends the message. If the number is less than a lower bound e < u <[ or higher



than an upper bound h < u < m — e then the sender proceeds with AD or AU
respectively. If the number is in the middle range | < u < h then the sender
chooses the direction randomly from AD and AU and forwards the mode and «
with the message to the next node.

2. Compare the privacy of ADU with AD and AU.

Solution:

AD and AU have identical privacy guarantees due to their symmetry.
After choosing the direction in the first round, ADU is identical to the
AD/AU with scaled parameters based on e since every node learns the
direction. Therefore, all three have the same privacy guarantee.

3. Compare the privacy of ADU with crowds.

Solution:
In the AD, u is always decreasing and can act as a measure of how likely
is the previous node to be the sender. ADU has the same privacy as AD.

An alternative to ADU, is the “random always down or up” (RADU) algo-
rithm is which does not send the direction (AD or AU) with the message. Each
node on the path receives the message with a random number u. Similar to
ADU, each node uses the ADU algorithm to decide the direction but with fresh
randomness.

4. Compare the latency of ADU with RADU.

Solution:

RADU can change direction during the send process, so RADU has a
higher latency than ADU. For example, consider the following RADU run
with parameters (e = 1,1 = 1,h = 9,m = 10). The sender chooses the
random number ug = 3 and forward to the first node. The first node

chooses the ‘up’ direction and a new random number u; =7 & [3,10] and
sends w1 to the next node. The second node randomly chooses direction

‘down’ and random number uy = 4 & [1,7]

5. Compare the privacy of ADU with RADU.

Solution:

Since the adversary does not know the direction of the previous node, it
cannot use the distance of u from 1 or m as a measure of the number of
hops.



